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NRL 

    This report documents the investigations made in a rapid evaluation of the role of HDF5 technology in logging the output of electronic warfare 
(EW) computer simulations. The goal was either early identification of any clear disqualifications of HDF5 or an outline for how it may be moved 
forward in an EW logging solution.  No up-front disqualifications were identified. The distinction between representation and query notation is 
emphasized. Novel contributions include an abstract data model of the EW simulation logging stream, and an exploratory conformation to both 
the relational and HDF5 data models.
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ELECTRONIC WARFARE M-ON-N DIGITAL SIMULATION LOGGING 

REQUIREMENTS AND HDF5: A PRELIMINARY ANALYSIS 
 
 

1. INTRODUCTION 
HDF5 technology [Folk] has been proposed as a standard for file storage of large arrays of scientific data 
as well as an application programming interface (API) for accessing that data.  This report documents an 
evaluation charrette of the potential role of HDF5 in logging the output of computer simulations of 
electronic warfare (EW) engagements.  The goal was to either rapidly identify any prima facie 
disqualifications of HDF5 or to outline how it may be moved forward in an EW logging solution.  A 
focus of this investigation was an analysis at the level of abstract data modeling. 
 

2. PROBLEM STATEMENT 
Here we sketch the logging requirements of an EW simulation.  This account is informal and does not 
claim to be exhaustive.  Questions are noted as they arise. 
 
The EW simulation logging problem, stated simply, is as follows: 1) We have a collection of simulated 
things (entities or subsystems), where each is producing multiple streams of time series data.  2)  The data 
are not necessarily synchronous nor of the same type.  3)  We want to log these data to a file for later 
analysis. 
 
To better understand the structure of the problem apart from details of implementation, we consider what 
an appropriate abstract data model for the problem would be. Should this data model reflect the 
simulation that generates it, the model implied by the query notation, or the data’s inherent structure?  
The first two options pertain mostly to convenience.  We will emphasize the data’s inherent structure, 
confident that this can be rendered into convenient representations as needed. 
 
The EW simulation has a collection of entities or subsystems that can log data, but we will de-emphasize 
these and focus instead on the data themselves as primary.  It does follow that most logged data will be 
associated with some “owner” parent or subsystem, and this association should be recorded.  Not all data 
will have an associated entity, e.g. parameters pertaining to the simulation run as a whole.  The collection 
of logging entities and/or subsystems may be flat or hierarchical; what impact if any does this have on 
logging?  Is it a substantial difference, or a mere implementation detail of the API? 
 
A logging entity or subsystem can log asynchronously, therefore, most logged data is timestamped.  A 
timestamp is not appropriate for all data, because some data pertains to the entity, subsystem or 
simulation as a whole, therefore a timestamp cannot be mandatory.  Is it allowable for the same item to 
have both non-timestamped and timestamped values?  Should the timestamp itself be considered data or 
an attribute?  Is time only meaningful in its role of describing data associated with it, e.g. so the fact that 
the timestamp sequence was 0.0, 0.1, 0.2… alone (apart from its associated data) is regarded as 
completely uninformative? 
 ________________
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Logged data will necessarily be of some type.  An entity or subsystem can log data selected from a menu 
of types, but what is the extent of that menu?  At one extreme it may be limited to a handful of well-
known types (e.g., floats, ints, arrays of the same, strings).  At the other it may allow arbitrary user-
defined objects.  The difference is in the availability of methods to work with the data.  In the former case 
they are typically available in the implementation language – most programming languages have 
constructs for working with numbers and strings built-in for convenience.  In the latter, the object must be 
serializable and deserializable for storage in and retrieval from the database, and the user is responsible 
for providing the software to work with and interpret the contents. 
 

2.1 Hierarchical Quality 
The role of hierarchy is a persistent theme.  When several data all contribute to a description of the same 
thing, it is natural to group this data together under a common heading.  Is the data inherently 
hierarchical?  If so, in what sense?  Is this relevant to logging?  Is a relational database solution 
disqualified because it is not hierarchical?   
 
We will make some preliminary distinctions here.  Hierarchy in the data appears to be of two distinct 
kinds.  The first involves an individual data stream’s association with (or containment in) a subsystem, 
and containment of subsystems in an entity or larger subsystem.  Hierarchy in this sense pertains to the 
simulation model.  The second sense involves composite data types such as arrays, where e.g. a 2-D array 
is conceptualized as a container for rows, and a row is in effect a 1-D array, a container for elements.  
Hierarchy in this sense pertains to nested containers and is at work at a level somewhat independent of 
the simulation model. 
 
A table in which some column values tag their row such that they can be “factored out” recursively to a 
tree structure can be considered a hierarchical interpretation of that table; see Figure 1 (also see the Group 
operator, [Date2005 p99]; and contrast the Ungroup operator, ibid., with the traditional transformation to 
first normal form, e.g. as described in [Welling p32]).  On the other hand, while we can factor a table out 
into a tree structure, the resulting tree is not strongly hierarchical in the sense that it is still equivalent to a 
table; the tree is not general, but is restricted to a special structure that results from its underlying table-
ness.  A distinctly hierarchical tree would allow for different depths in different parts.  A label-value 
characteristic associated with this would be that the value at more prior nodes of the tree determines the 
labels at later nodes.  A tree derived from a table does not have this property; in a tree derived from a 
table, node label is determined by depth only. 
 
The considerations above raise the question of whether they were exhaustively addressed in the 
development of the hierarchical database designs of the 1960’s.  A representative account on these legacy 
implementations in a recent reference [Silberschatz, Appendix E] suggests that they were not.  For 
example, it appears to follow from the tree-structure diagram schema that all nodes at the same depth 
have the same type, resulting in a database with a layered structure (a structure reminiscent of the table-
derived tree described above).  This hierarchy is qualitatively different from the one we are interested in 
here.  It is claimed in [Date2005 p170] that the hierarchical data model was invented after the fact of 
implementation; it would follow that any contemporary theory would be heavily laden with  
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Figure 1. Two levels of “factoring” columns out of a table.  From left to right are the original table, the Entity column factored out, 
the Entity and Comp columns factored out.  The data remaining at the leaves of the tree can be readily represented in array form.
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implementation details of the time.  Therefore, a reconsideration of hierarchical quality as carried out in 
this report is appropriate. 
 

2.2 Scoping 
If the logger can be conceptualized in the context of the EW simulation as a block in a block diagram, this 
suggests certain advantages and limitations.  Such a block will, by design, not have direct access to the 
internal structure of the entities and subsystems it is logging, and so any notion of hierarchical tags for the 
logged data will be emplaced manually.  Similarly, the logging block will have convenient access to the 
time-series data fed to it but can only be privy to entity, subsystem, and simulation-wide initial parameters 
(non-timestamped data) by some other mechanism. 
 

3. DATA MODEL OF THE LOGGING STREAM 
The goal of this report is to investigate logging of EW simulations not at the level of implementation in a 
database management system (DBMS) or other software, but at a higher level of abstraction.  This 
requires an abstract model of the EW logging problem.  In this section we propose an abstract data model 
for logging EW simulations and consider numerous issues related to it. 
 

3.1 The Logged Item 
From an abstract data model viewpoint, a log is a sequence of logged items.  We call this sequence a 
logging stream.  We propose the following formal structure for an item (the definitions here are modeled 
in part after similar concepts in [Date2005]). 
 
Informally, an item is a collection of label-value pairs.  The values are typed, where the type is associated 
with the label.  The labels in an item are unique. 
 
Proceeding more formally, we begin by pairing a label and its associated type.  This pair is called a 
column.  A column can be paired with a value (of an appropriate type).  A set of such column-value pairs 
is an item. 

  



set-of

column

value

typelabel

, ,
i i i
A T V

ì üæ öï ï÷ï ïç ÷ï ïçæ ö ÷çï ï÷ ÷ççï ï÷ ÷ï ïçç ÷ ÷çí ýç ÷ ÷çç ÷ ÷ï ïç ÷ ÷ççï ïè ø ÷çï ï÷çï ï÷çï ïè øï ïî þ




  

A similar structure consisting of a set of columns only (without values) is called a heading.   
 
An element in reference to items and headings is used in the set-theoretic sense as a synonym for 
“member,” so the elements of an item are column-value pairs, and the elements of a heading are columns. 
 
As sets, the elements of items and headings are unordered.  We emphasize that in the context of headings 
and items, a column is not positional, but rather is determined by its label.  It follows from these 
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definitions that every item has a heading, a heading is a collection of columns, and an item has one value 
per column. 
 
Observe that in this notion of an item there is no built-in distinction between the “real” data and the mere 
“attributes” of the data.  E.g., we usually think of x,y,z coordinates of position as real data, and the time 
and entity they are associated with as attributes of the data; this conceptual distinction is not maintained in 
the representation of an item. 
 

3.2 Notation 
Here we introduce a convenient but equivalent alternative to the formal math notation above.  Consider an 
item consisting of three column-value pairs, namely, a runIndex column of value 201 and integer type, a 
scenario column of value 667 and also integer, and a windDir column with value 0.25 and of type float.  
The expression for this item in the math notation used above is 

 ( )( ) ( )( ) ( )( ){ }runIndex,Int ,201 , scenario, Int ,667 , windDir,Float ,0.25   

To improve readability, we will use an alternative notation of label-value assignments, where the type can 
be inferred from the value (e.g., floats have decimal points, integers do not, arrays use nested square 
brackets, etc.).  For example, the above item can be denoted as: 

runIndex=201 scenario=667 windDir=0.25 

Recall that since we are representing a set, the ordering of elements in an item is immaterial, and so the 
notation above is indistinguishable from: 

scenario=667 windDir=0.25 runIndex=201 

 

3.3 Logging Stream 
An important property assumed of the logging stream is that each item is self-sufficient, independent of 
the context of other items.  Consider this counterexample: 

time=0.1 
entity=e1 
xpos=10.0 
ypos=‐5.0 
zpos=90.0 
entity=e2 
  etc. 

It would be very natural to read this stream where xpos, ypos and zpos pertain to entity e1, and that e1 
and e2 data are both associated with time 0.1.  In such an interpretation, the role of the time and entity 
items is not to be informative in themselves but to “change the subject” of what the stream is currently 
providing information about.  As a result the order of items is critical; the meaning of an item depends not 
only on the item itself, but also on what items have come before it.  Such a structure is perfectly 
reasonable for some applications but is not what we are defining here.  An encoding of the same intention 
as a proper logging stream could rather look something like this: 

entity=e1 time=0.1 xpos=10.0 
entity=e1 time=0.1 ypos=‐5.0 
entity=e1 time=0.1 zpos=90.0 
entity=e2 time=0.1 xpos=0.0 
  etc. 
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Such a structure may give the impression of wasteful repetition, but we emphasize that this is an abstract 
data model, not a proposed implementation.  Efficiency is important, but is a consideration downstream of 
the current analysis.   
 
Item self-sufficiency is achieved simply by way of more informative headings.  Significantly, the logging 
stream becomes order-independent; there is no notion of “what the stream is currently providing 
information about;” the stream is stateless.  As a result, a subset of items can be selected and worked with 
on their own without the need to track down where they came from, and items from different sources can 
be interleaved into a single logging stream without concern for the stream’s state.  These are relevant 
considerations for M-on-N EW simulation and analysis. 
 

3.3.1 Headings and Hierarchy 
To carry out a hierarchical “factoring” from a collection of headings, analogous to that done above on the 
table in Figure 1, it is necessary that some columns from different headings have a common meaning – 
this is key to hierarchical structure. 
 
For example, the “position” column might mean an xyz position in one model, but a Boolean indicating 
whether an entity is “in position” or not in another model – they mean different things, and the use of the 
same name is a mere coincidence.  In this case the “position” column is not a candidate for factoring out.  
On the other hand, in the examples in this report, “entity” always means the same thing, and therefore it is 
a candidate for factoring.  Questions to consider include, how do we indicate that different appearances of 
the same label have the same meaning? (one option is to simply require this), and, what does it mean if 
there is no column shared by all items? 
 

3.4 Examples 
In numerous cases below, alternative item representations encode exactly the same data but may be 
processed differently by a logger capability. 
 
Here are several per-run data, where the designer chose to spread them out over several items: 

runIndex=201 
scenario=667 
windDir=0.25 

The same data in a design where they are condensed into one item: 
runIndex=201 scenario=667 windDir=0.25 

The choice between these has implications for what headings end up appearing in the logging stream. 
 
A similar choice is made for per-entity data.  Spread out over several items: 

entity=e1 type=radar 
entity=e1 model=notional 
entity=e1 beamwidth=10.0 

Or condensed into one item: 
entity=e1 type=radar model=notional beamwidth=10.0 
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The bulk of items in the data stream will be stamped with an associated sim time: 
entity=e1 time=0.1 xpos=10.0 ypos=‐5.0  zpos=90.0 
entity=e1 time=0.2 xpos=20.0 ypos=‐10.0 zpos=90.0 
entity=e1 time=0.3 xpos=30.0 ypos=‐15.0 zpos=90.0 

 

3.4.1 Heading Choices for Array Types 
Commonly, some data should be grouped together or structured in a regular way.  These arrays of data 
can appear in items in several ways.  Next we will briefly consider several possible heading designs for 
array types and their implications.  Among other things, these options can be interpreted as means to 
introduce inherently order-dependent array data into an order-independent logging stream. 
 
Most simply, the value type may directly be an array.  E.g., position data may be in a single “position” 
column whose type is 1-D array of length 3. 

entity=e1 time=0.1 pos=[10.0, ‐5.0, 90.0] 

 
The item may have one element per component.  In this design, each datum has its own associated 
column.  E.g., for 3-D position data, the heading could consist of three floating point numbers labeled x, 
y, and z. 

entity=e1 time=0.1 x=10.0 y=‐5.0 z=90.0 

 
There can be one item per coordinate.  The item heading includes columns for the component and the 
associated value.  For the 3-D position example, a component column could take values like x, y, or z, 
and the data column would hold the associated numeric value. 

entity=e1 time=0.1 component=x value=10.0 
entity=e1 time=0.1 component=y value=‐5.0 
entity=e1 time=0.1 component=z value=90.0 

It is common for the component to be an integer index. 
entity=e1 time=0.1 index=0 value=10.0 
entity=e1 time=0.1 index=1 value=‐5.0 
entity=e1 time=0.1 index=2 value=90.0 

If the logging stream was not stateless, ordering alone could be enough to determine the indices of a 
sequence of items.  However, to satisfy our definition of a logging stream, any ordering information 
should be encoded into index columns so that information does not change if the items are reordered. 
 
For logical completeness we can consider an item-valued type (this corresponds most closely to a 
relation-valued attribute (RVA) in relational database theory [Date2005 p31]).  Here we delimit the 
contained item in parentheses. 

entity=e1 time=0.1 pos=(x=10.0 y=‐5.0 z=90.0) 

 
The direct array and components approaches are very similar.  Both have a fixed number of elements, 
though the components representation does not have an explicit array shape and nothing necessarily 
constrains the components to all be the same type.  In a relational table, an array can be converted to 
components with the extension and projection operations: first extend the array table with columns for the 
components and populate them with data sliced out of the array, then project away the array column.  
These steps can be reversed to revert from components to array. 
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The coordinates representation is quite different from array or components.  Contrasting coordinates vs. 
components, when we wish to address the data as an array, i.e., via indexing, the indices (x, y, and z in the 
3-D position example above) are in the columns of the components representation, but in the “rows” (item 
values) of the coordinates representation. 
 
The array shape and number of elements is much more rigid in array and components representations than 
in coordinates.  The coordinates representation thus can support ragged or sparse arrays “automatically” 
without additional fuss.  A transformation from coordinates representation to array or components does 
not appear to have any brief expression in terms of elementary relational operations. 
 

3.5 Query Notation 
Here we sketch out some options for what a terse, expressive navigational or query notation of a logging 
stream might look like.  (Considering the huge range of queries possible, the discussion is necessarily 
circumscribed.)  The importance of a query notation is that it is the primary way the data gets accessed.  
(Data are also accessed by manual browsing of the files as a sanity check.)  The notation’s expressiveness 
and convenience are paramount.   
 
Note that while the query notation may be closely bound to the data representation, this is not necessary 
in principle.  The programming language in which the query notation is embedded is probably a more 
significant constraint than the underlying data model or representation.  Design and implementation of an 
expressive query capability is both a worthwhile design goal, and a separate question from representation.  
The distinction is worth making for the additional degree of freedom it affords.  However, if a 
representation (such as HDF5) comes with an acceptable query notation more or less built-in, so much the 
better. 
 

3.5.1 Member-Index 
A very succinct and familiar notation for navigating logged EW data, used to some extent in legacy 
solutions and very well-adapted to use in common scripting and programming languages, uses “dot” 
notation to select a member and square brackets to index an array.  These notations, or constructs similar 
to them, appear in C++, Java, Python, and MATLAB.  (Structurally this notation is very similar to “path” 
notation where a sequence of member names or indices is separated with forward-slashes.) 
 
How does the logging stream construct relate to such a member-index query notation?  It depends on 
recursive factoring of headings foreshadowed above in Figure 1, and which may be carried out as follows.  
At a given level in the hierarchy, identify an appropriate heading element and factor it out.  This yields a 
collection of subsets of the logging stream, each selectable by a value for the factored column.  Apply this 
operation recursively to each of the subsets until a “natural stopping point” is reached – perhaps when the 
remaining data has a highly structured array form.  (Problems can arise if, e.g., a factorable heading does 
not exist.) 
 
For example, we may factor a table on entity and then component, as was done in Figure 1.  Example 
queries to this database could include db.e1.xpos, which signifies a query for the data associated with 
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entity e1 and component xpos, and would return an array with columns of time and val (with a value of 
xpos); and db.e1.xpos[0] for the 1x2 array containing the first time and xpos values. 
 

3.5.2 Label-Value 
The member-index approach becomes inconvenient if, for example, I want to select data for t=0.5.  
Syntactically, 0.5 is inappropriate for member access, and some languages will balk at its use as an index 
because it is not an integer.  To address this we could introduce a label-value selector method, perhaps 
lv(label,value).  For example, a sample usage for selecting e1’s xpos at time 0.5 might be denoted thus: 

db.lv('entity','e1').lv('param','xpos').lv('time',0.5) 

Besides supporting queries on floats like time, this notation also frees us from defining an ordering tree 
on the columns.  It can do this because the columns are specified in the arguments, rather than being 
decided a priori to be in a certain order. 
 

3.5.3 Discussion 
In evaluating these makeshift query notations, we compare them briefly to the selection (a.k.a. restriction, 
filter, “discarding rows”) and projection (“discarding columns”) operations in relational algebra.  
Although the logging stream is not a table, the selection and projection operators have a natural, even 
obvious, generalization to it.  The basic operation in both the member-index and label-value notations 
combines generalized selection and projection: only items matching a given value in a certain column are 
kept, then that column is projected away.  Expressing a query in terms of selection and projection avoids 
some of the shortcomings of both notations above: it avoids the order-dependence of member-index, and 
unlike label-value it allows operations such as selecting columns from items designed in the component 
representation described earlier. 
 

4. DATA MODEL ADAPTATIONS 
In this section we consider how the data model of a logging stream defined above may be adapted to the 
relational and HDF5 data models. 
 

4.1 Logging and the Relational Model 
The relational model is well-known with an extensive literature and so will not be summarized here.  
Helpful background information may be found in [Mayne], [Welling] and many other sources.  The 
definition of the relational model used here substantially follows [Date2005]. 
 
In the spirit of structural typing [Pierce, section 19.3] (or of duck-typing more loosely), observe that items 
with the same heading may be grouped together naturally to constitute a relation (in the relational 
database sense [Date2005 p45]) or table.  Since we assumed above that each item in a logging stream is 
complete or self-sufficient, i.e., it does not depend on outside context or information such as ordering, the 
items of the stream can be “dealt out” to relations of the appropriate heading without a loss of 
information.  So, for every heading appearing in a logging stream, let there be a corresponding table with 
the same heading.  Then for each item in the logging stream, select a table according to a heading match, 
and add the item’s data as a record in that table. 
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For example, consider this brief logging stream. 
entity=e1 model=notional beamwidth=10.0 
entity=e2 sensor=imager 
entity=e1 time=0.0 mode=1 
entity=e1 time=0.1 x=10.0 y=‐5.0 z=90.0 
entity=e2 time=0.1 x=0.0 y=100.0 z=10.0 
entity=e2 time=0.1 image=[...] 
entity=e1 time=0.125 mode=2 
entity=e1 time=0.2 x=20.0 y=‐10.0 z=90.0 
entity=e2 time=0.2 x=0.0 y=200.0 z=10.0 
entity=e2 time=0.2 image=[...] 
entity=e1 time=0.3 x=30.0 y=‐15.0 z=90.0 
entity=e2 time=0.3 x=0.0 y=300.0 z=10.0 
entity=e2 time=0.3 image=[...] 

This stream has five unique headings, which corresponds to five tables: 
entity, model, beamwidth 
entity, sensor 
entity, time, mode 
entity, time, x, y, z 
entity, time, image 

After processing the logging stream the tables will have been be populated with item data.  The tables 
with headings “entity, model, beamwidth” and “entity, sensor” will contain only one record each.  The 
table headed “entity, time, mode” will have two records, that headed “entity, time, image” will have three 
records, and the table headed “entity, time, x, y, z” will have six records. 
 
Note that value types in the logging stream are allowed to include composite data types such as tuples and 
arrays.  We find persuasive a notion of the relational model in which such values are considered atomic 
[Date2005 p29] (as contrasted with a more traditional view, e.g., [Welling pg32]; to be fair, the traditional 
view is likely motivated more by existing DBMS implementations than by theoretical considerations). 
 
A choice of headings in the logging data stream that leads to a useful collection of tables is a matter of 
database design.  For example, should entity parameters be logged as a collection of small items, or one 
comprehensive item?  Here this question is only addressed partially, in the abstract data model aspect. 
 
At any rate, the collection of tables that results from this procedure is formally a relational database. 
 

4.1.1 Views 
While the tables described above are self-assembled according to a natural criterion, the resulting 
arrangement may not be the most convenient.  In the example above, positions for both entities e1 and e2 
are described with heading “entity, x, y, z,” so the position logs of both entities were interleaved into one 
table.  But the user may prefer one table per entity over this all-positions table. 
 
However, this is not a fundamental limitation because per-entity position tables can be readily derived 
from the all-positions base relation.  Such tables that are defined in terms of base tables are known as 
views [Date2005 p67].  For example, the position tables can be expressed with restriction operations on 
different entity values.  Alternatively, they are the values in a grouping [Date2005 pg99], [Date2004 
p203] of the base relation over entities.  In this approach, a portion of the database design task is 
postponed from generation of the logging stream itself to a post-processing step. 
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4.2 Logging and HDF5 
Next we will consider how the data model of a logging stream may be adapted to the HDF5 data model.  
This will be done after a brief introduction to HDF5. 
 

4.2.1 A Brief Overview of HDF5 
HDF5 is a collection of related things.  Primarily this includes an abstract data model, a storage format, 
and an implementation.  In addition, it also includes a collection of command-line tools, and extensions 
for other languages. 
 
The abstract data model defines how we conceive of the data’s organization, and guides how we work 
with the API.  The storage format is something we never expect to bother with; the point of using a 
standard format is to avoid writing our own generators and parsers, relying on a library to do that for us.  
(However, developing confidence in this storage format is an important milestone in building confidence 
and acceptance of the format.)  The implementation is available for numerous platforms, and presents a C 
API.  Extensions for other languages such as C++, MATLAB and Python greatly increase the usefulness of 
the format: different tools written in different languages can collaborate on a common problem.  At a 
beginning level, command-line tools are important for sanity checks, for a first-look at data received from 
collaboration partners, for evaluating legacy data, and for gaining insight into the HDF5 data model by 
looking at examples. 
 

4.2.2 HDF5 Abstract Data Model 
In its data model, an HDF5 file consists of groups, datasets, and attributes.  Groups contain datasets or 
other groups; they are what puts the “H” (hierarchical) in HDF (hierarchical data format).  They are akin 
to a file system folder or directory.  A dataset is a homogeneous n-dimensional array of some type.  
Finally, both groups and datasets may have user-defined attributes, which we think of as a collection of 
key-value pairs. 
 
Groups and datasets have names.  The “path” to a group or dataset uses the same forward-slash notation 
as a Linux file system.  Every HDF5 file contains a single root group. 
 
As observed in [Rossant] (in which the author describes why his group abandoned HDF5), 

“A simpler and roughly equivalent alternative to HDF5 would be to store each array in its own 
file, within a sensible file hierarchy, and with the metadata stored in JSON or YAML files.” 

This provides a concrete and illuminating analogy for understanding the HDF5 data model. 
 

4.2.3 Logging and the HDF5 Model 
Now we will analyze the logging stream to see how it may be conformed to the HDF5 model.  In this 
analysis we will focus on groups and datasets, and set aside attributes for simplicity. 
 
We need to determine what datasets there are, where they are located in the group hierarchy, and what 
their names are.  Then we will consider the dataset arrays as objects to be “grown” as the logging stream 
is processed.  This is analogous to the “building up” or accumulation of items to tables in the relational 
case. 
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The HDF5 distinction between groups and datasets induces a distinction in item elements.  Some of the 
elements contain data that will end up stored in a dataset.  The only use for the elements that remain is to 
determine which dataset the associated data belongs in; we will call these elements table-selectors. 
 
The mapping from table selectors to a dataset in a group hierarchy may be arbitrary, and is an HDF5 
layout design question, akin to a database design.  This mapping is the primary adapter from the logging 
stream data model to the HDF5 data model.  One plausible means to lay out this mapping in a way that 
takes its cue from the data is to follow a recursive factoring procedure akin to that described above for the 
notional member-index notation.  From the headings that appear in a logging stream, factor out an 
appropriate table-selector heading element.  For each value taken by this element, instantiate an HDF5 
group at this level.  Continue recursively until the table-selector heading elements are exhausted; what 
remains is array data.  At each such “leaf node” instantiate an HDF5 dataset to contain the array data, 
where name and dimension are decided by some appropriate means. 
 
For example, using the same logging stream as the relational model above, the only clear table-selector is 
entity.  After this, we have candidates for dataset representation: position and mode for e1, and position 
and image for e2.  The resulting paths of the datasets could be: 

/e1/mode 
/e1/mode_time 
/e1/position 
/e2/position 
/e2/image 
/e2/image_time 

We have chosen to include time as a column in the position datasets because the data are all floats, but to 
separate it out to another dataset for mode and image, because they are different types.  The tables with 
one record only are good candidates for HDF5 attributes.  This example suggests that a simple general 
rule for mapping from items of a logging stream to HDF5 structure is not straightforward. 
 
While the query and representation models are independent in principle as noted above, there is an 
obvious advantage if the resulting layout can be adequately navigated using built-in HDF5 query 
capabilities only: no separate (and potentially inefficient) query algorithms need to be developed and 
maintained. 
 

5. HDF5 EXPERIMENTAL RESULTS 
To complement the theoretical analysis documented above, several small-scale implementation 
experiments were carried out.  For a work-in-progress report such as this it is sufficient to summarize the 
results. 
 
Demonstrated capabilities include: adequate handling of a large structure, i.e., an array that used more 
than half the memory available on the system; building up an array in portions; interleaved writing to 
separate arrays in the same file, and later access to each of the arrays as a whole; adding a README 
attribute to an existing file; and translation of sample code from C to Python using the low-level API in 
the latter. 
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Additional small-scale experiments planned include complex numbers, a sequence of arrays of different 
sizes, and creation of new groups and datasets after some data has been written. 
 

6. CONCLUSIONS 
The two main conclusions that can be drawn at this time are: 

 At the abstract data model level, both a relational database and HDF5 can be used for logging the 
output of EW simulations 

 Regarding HDF5 more broadly, the investigation did not turn up any obvious disqualifications.  It 
is a promising technology that deserves further investigation into how it may best serve the needs 
of logging of EW simulations. 

Additionally, this work emphasized the importance of distinguishing data representation from query 
notation. 
 
In spite of its plausibility at the abstract data model level, we recommend against the adoption of 
relational DBMS software for EW simulation logging at this time for the following technical reasons. 

1. The adaptability of a logging stream to the relational model argued above assumes a relatively 
evolved concept of the relational model which many DBMS implementations do not adhere to. 

2. The current user base is very experienced with array manipulation and comfortable with 
hierarchic navigation (at a minimum on the analogy to navigating a file system),  but has little to 
no experience with formulating queries in the SQL query language usually used in relational 
DBMS. 

3. The data itself is reasonably well-adapted to the HDF5 model, and many end-user operations are 
array operations. 

4. Much of the benefit of a DBMS lies in relational join operations, query optimization, integrity of 
updates (transactions), rollback, and related features, which are important to mainstream DBMS 
applications but largely irrelevant to write-once, read-many scientific data, especially the output 
of computer simulations. 

 
Some HDF5 features of potential interest were consciously ignored in this investigation, including 
compound data, hard links, soft links, external links, usage from MATLAB and C++, dimension scales, the 
HDFView GUI tool, and parallel I/O. 
 
Some issues related to the concerns of this report arise when sharing data with other users or 
organizations.  If we are the data’s only user, we are fairly free to construct an ad hoc structure on the fly, 
but collaboration requires conventions.  A custom file format requires custom parsers and writers, which 
creates a deployment and maintenance burden.  With HDF5 this particular responsibility is relieved, but 
because of its flexible nature we are still left instead with the higher-level, more limited design task of 
agreeing on a convention for groups, datasets, and attributes.  Also, as noted in [Collette], “Because 
HDF5 is self-describing, anyone using Python, IDL, MatLab or any of a dozen other environments could 
simply open up the file and poke around.”  Such a consideration is significant in an experimental research 
environment. 
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Additional, miscellaneous conclusions and observations include the following. 
 Logging is only one possible role for HDF5 in EW simulation.  It is common for simulation 

models to depend on large static data sets.  This data may be encoded in custom file formats and 
the files may be so large that they cannot be loaded into memory in their entirety, but must have 
sections paged in and out.  Such cases are candidates for delegation to HDF5.   

 Treating data as functions – interpolation is a very direct example – tends to be underrepresented 
and deserves more consideration in scientific database discussions.  The extent to which this 
viewpoint may be addressed in HDF5 has not been fully explored. 

 It was briefly observed that some relational operations have natural, even obvious, generalizations 
from a relational table to the logging stream.  This may be a fruitful avenue for understanding 
better the formal similarities and differences of the logging stream and relational models. 

 A hierarchical navigation query style appears very natural for our application.  Yet the 
hierarchical model as a whole was tried and abandoned in mainstream practice in favor of the 
relational.  This poses a nagging question of whether our domain of scientific computing is truly 
different enough to indicate a different database solution, or whether we are slow to see how to 
address our problems in terms of a superior technology. 

 This report largely restricted itself to formal aspects of the logging problem, and many 
substantive issues remain to be explored. 
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